SUPPORT TO ROCK EXCAVATIONS
PROVIDED BY SPRAYED LINERS
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Abstract

The support provided to mining excavations by sprayed liners is
investigated. A cylindrical excavation of circular cross-section is con-
gidered. Three models are analysed. In the first model the liner forms
a thin cylindrical layer firmly bonded to the inner surface of the exca-
vation. In the second and third models the liner material penetrates
into open joints and fractures in the rock. In the second model the
liner material penetrates into the fractures to their full extent. In the
third model the liner material penetrates some distance into the frac-
tures but the fractures extend well beyond this depth and are taken
to extend to infinity. The excavation is subjected to a perturbation
in the form of a uniform shear at infinity. Two cylindrical regions
are considered, an inner region and an outer region which extends to
infinity. The stress and displacement in each region are calculated us-
ing plane strain theory of elasticity. In the first model the transfer of
stress from the rock to the liner is investigated and the decrease in the
stress concentration factor in the rock due to the liner is calculated. In
the second and third models the change in the displacement, rotation
and stress due to the penetration of the liner material into joints and
fractures is determined.

1 Imntroduction

Shotcrete, or pneumatically sprayed concrete, has been used for support of
mining excavations in rock for about fifty years. The thickness of a typical
shotcrete layer is about 50mm. The design of this support is usually based
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on the assumption that the liner acts as an arch. It is known that thin layers
of shotcrete, 10 to 20mm thick, also provide significant support. Recently
the use of thin spray-on liners, typically 4mm thick or less, for rock support
has increased in the mining industry. Unlike shotcrete, they are usually very
flexible and hence their structural capacity is negligible. Although no arch
action can be claimed the support given to rock masses by thin spray-on
liners is often better than expected.

Liners are considered to be thin if their thickness is less than 20mm.
There is no suitable design method for thin liners or analysis of their be-
haviour that can take into account the numerous possible support mecha-
nisms and their relative contributions. One factor that is-seen to be very
important is the contribution of the liner to the prevention of the loosening
of the rock mass.

A review of support mechanisms provided by liners has been given by
Stacey [7]. Stacey and Yu [8] have investigated mechanisms of rock support
provided by sprayed liners using numerical modelling. Wang and Tannant
[10] used discrete element models to simulate numerically a liner round a
tunnel. Recent progress in research on surface support in mining with a
particular emphasis on thin spray-on liners is contained in the book edited
by Potvin, Stacey and Hadjigeorgiou [4]. We will consider here three simple
analytical models to investigate mechanisms of support provided by thin
liners.

We will consider a cylindrical excavation of circular cross-section. The
excavation will be subjected to a perturbation in the form of a shear stress.
This could model the change in stress acting on the excavation as a result
of the mining or due to a geological disturbance. The effect of the shear
perturbation on an excavation without the application of the liner material
will be compared with its effect on an excavation to which the liner material
has been applied. Three models will be considered. The three models use
the same mathematical results but interpreted in a different way.

In the first model the liner forms a thin cylindrical layer firmly bonded
to the inner surface of the excavation. The transfer of stress from the rock
to the liner will be investigated and the stress concentration factor [2] at the
surface of the excavation will be calculated with and without the liner. The
effect of the liner on the displacement and rotation in the rock will be inves-
tigated. This could model a thin layer of shotcrete that does not penetrate
to a significant depth into fractures at the surface of the excavation. Sup-
port mechanisms that do not depend on penetration of liner material into
fractures such as the thickness, stiffness and tensile strength of the liner can
be investigated. This model would be particularly applicable to a mechan-
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ically bored excavation in which the excavation process has not disturbed
the rock or caused fractures to develop in the rock. The only planes along
which the liner material could penetrate are the natural planes of weakness.

In the second and third models the liner material penetrates into open
joints and fractures in the rock. The penetration of the liner material inhibits
the movement of the blocks of rock. It is relevant in all jointed rock situations
but especially in regions of very high stress such as at the surface of an
excavation in which loosening and stress fracturing have taken place. The
thin layer of liner at the surface of the excavation will be neglected. The
effect of the liner is modelled by the layer of fractured rock penetrated by
the liner material. Before the application of the liner material this layer of
fractured rock will have Young’s modulus and Poisson ratio less than that
of the unfractured rock [3]. After the application of the liner material it will
be assumed that the Young’s modulus and Poisson ratio of the fractured
rock penetrated by the liner material are the same as for the unfractured
rock.

In the second model it is assumed that the liner material penetrates into
the fractures to their full extent. The rock outside of the liner penetration
contains no fractures, only planes of weakness. This model would be rep-
resentative of excavation by careful blasting with any loose material having
been scaled or barred down. The depth of penetration would be typically
100 to 200mm. In the third model the liner material penetrates some dis-
tance into the fractures but the fractures extend well beyond this depth.
This model is representative of an excavation in which blasting has been
poorly controlled. The depth of fracturing could be 0.5m or more. We will
model the fracture zone to extend to infinity. In both models the effect of the
application of the liner material on the displacement, rotation and tensile
stress at the surface of the excavation will be investigated. This could model
a thin spray-on liner. Support mechanisms that depend on liner penetration
such as the bonding of adjacent blocks which inhibits block movement can
be investigated.

The stress and displacement will be calculated using plane strain theory
in infinitesimal elasticity. In Section 2 the formulation of plane strain in
polar coordinates and in terms of the Airy stress function is outlined. In
Section 3 the problem of the stress and displacement around a cylindrical
excavation in a shear field is formulated. Two cylindrical regions are con-
sidered, an inner region and an outer region which extends to infinity. The
normal and tangential components of the displacement and stress are contin-
uous at the interface. In Section 4 a perturbation solution is derived for the
stress and displacement to first order in the perturbation parameter which
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is the ratio of the thickness of the inner region to its radius. In Section 5 the
results are applied to the first model of a thin liner and the transfer of stress
from the rock to the liner is investigated. In Section 6 the second and third
models are considered and the effect on the displacement and stress of the
penetration of the liner material into the fractures is investigated. Finally,
conclusions are summarised in Section 7.

2 Plane strain

We first briefly outline the theory of plane strain and present the equations
which will be used later [2, 1].

Let (r,8, z) be cylindrical polar coordinates. In plane strain all quanti-
ties are independent of z and the displacement in the z-direction vanishes:

Uy = up(r, 8), ug = ug(r, ), u, =0, (2.1)
ez =0, eg: =0, e, =0, (2'2)
Trz =0, Tez =0, (2'3)

where e;,, is the infinitesimal strain tensor and 7;; is the stress tensor.
From the inverse Hooke’s law,

Tzz = U(Trr + TBB) ? (24)

where o (0 < ¢ < 1/2) is the Poisson ratio. Using (2.4), the remaining
components of the inverse Hooke’s law that do not vanish identically can be
expressed as

(1-0?) ;a(1+a)T

Crr = E Trr E a0 » (2'5)
140

=030 0, (26)
1-o? o(l+a)

€pp = ( B ) Teo — _(_'E'_)' Trr s (2'7)

where F is the Young’s modulus.
The non-zero components of the strain tensor are related to the compo-
nents, u,(r,#) and ug(r,#), of the displacement vector by
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du,
ef"f‘ = ar ] (2'8)
_1(108ur  Ousg uy
ero = 5.(; B " or - 7) (29)
_10up | up
€gg = ; -59'— + r (210)

Equations (2.8) to (2.10) consist of three equations for the two displacement
components, u, and ug. For a single-valued solution for u, and ug the
components of the strain tensor must satisfy the compatibility condition

9 (1 %e,g _%_ ae,-a) _ B%gs 1 0%, 2 0egy 1 e

cwa6 a0 )= o Traae Tror ron - 2t

The full set of six compatibiliy conditions in cylindrical polar coordinates is
given by Saada[6]. The remaining five compatibility conditions are identi-
cally satisfied because ey, €g, and e, all vanish and there is no dependence
on z. When expressed in terms of the Cauchy sress tensor using (2.5) to
(2.7), the compatibility condition (2.11) becomes

1 Bre @ e 2 1 Prg g o 1 790
2 082 l—-0g 82 1—ordréd O0r2 1—0or? 962
+(2—0‘)13799_(1+0‘)13T" 2 131',-9_0-

1—-c/ r Or l1-0 Far—(l—a)ﬁ 80
(2.12)

Equation (2.12) is independent of the Young’s modulus E.
The body force due to gravity will be neglected. The equations of static
equilibrium with zero body force are

aTrr 1 31}-9 1 _

ar + - 50 + r (Trr 7'80) =0, (2'13)
10199 O 2 _
; —33 + _Br Tro + ; 6 =0. (2'14)

When the body force vanishes, the stress tensor can be expressed in terms
of the Airy stress function, ¢(r,8), as
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1 8% 108¢
= 56 Ty ar (2.15)
18 1084 B8 (194
= a6 T 28 - or (r aa) (2.16)
82¢
ng=§2-. (217)

The equations of static equilibrium, (2.13) and (2.14), are identically satis-
fied by (2.15) to (2.17).

If (2.15) to (2.17) are substituted into the compatibility condition (2.12),
then (2.12) reduces to the biharmonic equation

Vig=0, (2.18)
where 2
# 18 1 8
V4=(-3_T_2+;§+;'_2-W) (2.19)

Equation (2.18) is independent of the elastic constants. Hence if the bound-
ary conditions are expressed in terms of tractions the stress in an elastic
body in a state of plane strain is independent of the elastic constants.

The rotation vector §2 of a material element is

1
2= 5 curlw , (2.20)
where u is the displacement vector. For plane strain the displacement vector
is given by(2.1). Hence for plane strain

Q2 =0, Q=0, Qb= (%ﬁ—%%—%’-+ ) (2.21)

The amount of strain energy stored per unit volume of an elastic body

is sometimes used to determine the limiting stress at which failure occurs
[9]. The strain energy is the sum of two parts, that due to change of volume
and that due to distortion. Since isotropic elasic materials can sustain very
large pressures without yielding only the strain energy due to distortion is
considered when determining the strength of the material. By subtracting
off the part of the strain energy due to change in volume the part of the
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strain energy due to distortion is obtained. Expressed in cylindrical polar
coordinates the strain energy due to distortion is

- (140
Vo = ( 6E ) [(Trr - 7'30)2 + (7'96 . Tzz)z + (Tzz - Trr)2]
( (2.22)
140
+== ) [7% + 73, +72] -

For plane strain, using (2.3) and (2.4), Vp reduces to
(1+40)
6E

(1+ o)
E

Vo = [(‘frr — 150)* + (1 — )70 — 07) > + (1 — )iy — a'rae)2]

2
+ Tro "

(2.23)

3 Cylindrical excavation in a shear field

Consider a cylindrical excavation in a uniform shear field § which represents
a perturbation to the background stress due to either mining or a geological
disturbance caused by stress redistribution induced by slip on a geological
structure. Since the elasticity theory is linear the total stress field is the
sum of the insitu stress and the stress due to the perturbation. We will be
concerned here only with the stress due to the perturbation.

Consider a cylindrical excavation of radius e as shown in Figure 1. The
elastic medium ¢ < r < oo consists of region 1 (a < r < b) and region 2
(b < r < 00). Quantities in region 1 are denoted by a subscript or superscript
1 and in region 2 by a subscript or superscript 2. Using the solution for the -
stress and displacement for this problem the three models can be analysed.

At large distances from the excavation,

T — 00! ¥ =0, T£§)=S, 1'153):0, (3.1)
where § is a constant. But in terms of Cartesian coordinates [2],

&% 2 2

eEE ey Woae O

Substituting (3.2) into (3.1) and solving for the Airy stress function gives

r— 00! g = —Szy = —% Sr?sin28 . (3.3)
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The additive constants in (3.3) have been dropped because they do not
contribute to the stress.
The Airy stress functions ¢1(r,8) and ¢o(r,8) satisfy the biharmonic
equaion:
ea<r<b: Vég1 =0, (3.4)

b<r<oo: Vigz=0. (3.5)

‘The surface r = a is traction-free. The adhesive liner is firmly bonded to
the rock at the interface r = b. Hence in all three models the normal and
tangential components of the displacement and stress are continuous at the
interface. The boundary conditions are:

r=a: T#)(a., 0)=0, (3.6)
r=a: TS;)(G.:O) =0, _ (3.7)
r=b: 7P (5,0) = 7 (6,6) (3.8)
r=b: 56,0 =73 (,6), (3.9)
r=b: uD(3,0) = P (b,6) (3.10)
r=b: “éll)(ba 6) = “4(92)(”: 8), (3.11)
r— 00 : ¢a(r,0) = —3 Sr2sin 29 . (3.12)

The boundary conditions (3.10) and (3.11) depend on the elastic constants
in regions 1 and 2. Unlike the problem of a cylindrical hole in an infinite
elastic medium this problem cannot be formulated in terms of stress alone.
The solution will depend on the elastic constants in regions 1 and 2.

Because of the form of the boundary condition (3.12) we look for a
solution of the form [2]

@(r,0) = f(r)sin26 . (3.13)
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Equation (3.13) is a solution of the biharmonic equation provided

d¢f 2d3f 9 d%f 9 df
A= A F AR (314
Since (3.14) is an equidimensional equation in r we look for a solution of the
form
f(r) =kr™, (3.15)
where k is a constant. It can be verified that (3.14) is satisfied provided
n =4, 2, 0, —2 and therefore

¢1(r,0) = [A‘r4 +Br? 4+ C + ;_1%] sin 26 , (3.16)

pa(r, 0) = [M“r4 +Nrt+P+ 92-] sin26 , (3.17)

where A, B, C, D, M, N, P and Q are constants. From the boundary

condition (3.12),

M=0, N=—'—g-. (3.18)

The components of the Cauchy stress tensor in region 1 are, from (2.15)
to (2.17),

3 (r,8) = _2B - %g - 9;?} sin 20 (3.19)
HD(r,6) = [-6arr 28+ 25 1 9D ] c0s 28, (3.20)
'r”) (r,60) = 12Ar2 + 2B+ %—f—] sin 26 . (3.21)

On setting A = 0, B = —5§/2, C = P and D = Q in (3.19) to (3.21), the
components of the stress tensor in region 2 are obtained:

7 (r,0) = [S - g- - %?—J sin20 (3.22)

(2) g (r,0) = [ 2P —t 64('?} cos 20 , (3.23)
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7D (r,0) = [-—S + %—?—J sin20 . (3.24)

The four boundary conditions on the stress, (3.6) to (3.9), becomes

a'B+24°C+3D=0, (3.25)
3¢A+a*B-a’C-3D=0, (3.26)
¥B+20C+3D -2 P-3Q=-1b5, ' (3.27)
3°A+b6*B-b*C-3D+HP+3Q=-1vS. (3.28)

It remains to impose the displacement boundary conditions (3.10) and
(3.11). Consider first u,(r,8) and wuy(r,0) in region 1. Substitute (3.19) to
(3.21) into the inverse Hooke’s law (2.5) to (2.7) and use (2.8) to (2.10) for
the strain tensor in terms of the displacement. This leads to the following
three first order partial differential equations for u,(r,8) and ug(r, 8):

a'u,,. _ (1 -+ 0') 9 C 6D .
= F [ 120Ar° — 2B — 4(1 — o) 2T 4 |sin 20, (3.29)
10u, Bug ug (l+0) 2 4C | 12D
Oug _ (1 +o ) 3 C , 6D] . :

The three equations, (3.29) to (3.31), for the two unknowns, u, and ug, are
compatible because the compatibility condition (2.11) is satisfied. Equations
(3.29) and (3.31) are integrated with respect to r and 8, respectively, to give
ur(r,0) and ug(r,d). The arbitrary functions of integration are obtained by
substituting u, and uy into (3.30) and using the technique of separation of
variables. This gives

1+ C 2D]
¥ (r, ) = % [—401 Ar3 — 2Br 4 4(1 — o7) - + 'r_3] sin 26
—~F8inf + Gy cos b, (3.32)
'u,((,l) (r,8) = Q—E—fﬁ [-—-2(3 —201) Ar® — 2Br 4 2(1 — 201) g - 27?] cos 26
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—Fjcos0 — Gysinf + Hyr, (3.33)

where Fy, G1 and Hj are constants. The displacement in region 2 is obtained
by setting A=0, B=-5/2,C= P and D= Q in (3.32) and (3.33):

uP(r,0) = 5 [S‘r+4(1 —09) - + = sin 26

—Fy8inf + Gacos @, (3.34)
u,(,z)(r, 8) = -(—1—;%2) [Sr +2(1 - 209) —? - %?—] cos 20
—Fhcos@ — Gosind + Haor, (3.35)

where Fy, Go and Hs are constants.
Equations (3.32) to (3.35) are substituted into the boundary conditions
(3.10) and (3.11). This yields

Fi=FRKR=F, G=G=G, H=H=H, (3.36)
and
201 b8 A+bB —2(1-01)b2C — D+2(1 - 02)ab’P+0Q = -1 abS , (3.37)

(3—201)54 + BB ~ (1 - 201)6%C + D + (1 — 202)ab’P — aQ = - ad?S
(3.38)

1 !
a=(1+02)£1-—(1 al') . (3.39)

where

1+o01) B2 \1-02/) E}’ 1- g2
We find that it is the ratio F{/E4 that occurs naturally in the final solution.
The displacement
up(r,0) = —Fsin0+Gcos@ , ug(r,8) = —F cos—Gsinf+ H , (3.40)
when expressed in Cartesian coordinates is
uz(z,y) =G - Hy, uy(z,y) = -F + Hz . (3.41)

Equation (3.41) describes a rigid body translation of G and —F in the z
and y directions and a rigid body rotation H about the z axis. We therefore
take G=F=H =0.

The boundary conditions (3.25) to (3.28), (3.37) and (3.38) are six equa-
tions for the six unknown constants, A, B, C, D, P and (). A perturbation
solution for the six constants will be derived in the next section.
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4 Perturbation solution

Let
b—a

a
Since the thickness of the liner and the distance of penetration of the liner
material into the rock fractures are small compared with the radius of the
excavation, € will be small. For an excavation of radius ¢ = 2m and a liner
of thickness b — a = 50mm, € = 2.5 x 10~2 while if the depth of penetration
b~ a = 200mm then £ = 0.1. We will derive a perturbation solution for the
stress, displacement and rotation in regions 1 and 2 correct to first order in
the perturbation parameter ¢ .

Now

(4.1)

E =

b=a(l+e¢). (4.2)

We will derive the perturbation solution in terms of a. It can readily be
expressed in terms of b using

a=b(1-¢e+0(?), (4.3)
as € — 0. Let
A= Ag+eA; + O, D = Dy + €Dy + O(e?),
B = By +¢B; + O(¢?),, P=Py+eP,+0(%),
C =Cp+eC +0Q(?), Q=Qo+¢eQ1+0(?), (4.4)

as € — 0. Equations (4.2) and (4.4) are substituted into the boundary con-
ditions (3.25) to (3.28), (3.37) and (3.38). The boundary conditions are then
expanded in powers of e.

4.1 Zero order in ¢

To zero order in € the boundary conditions are
a‘Bg + 2a2Cy+ 3Dy =0, (4.5)

3a%A4, + a4Bo —a2Cy—-3Dg =0 , (4.6)

2a2Py + 3Qo = 3 a5, (4.7)
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a’Py+3Qo = —% al$, (4.8)

20‘1&6140 + a4Bo - 2(1 - 0’1)&200 —Dg+ 2(1 - Jz)aa.2P0 +alQy = —% aaiS R

B (4.9)

(3—2al)a6Ao+a4Bo—(1—20‘1)a200+Do+(1—2ag)aa2Po—aQ0 = —% aaiS .

' (4.10)

Equation (4.5) was used to eliminate By, Cp and Dp from (4.7) while (4.6)

was used to eliminate Ag, Bo, Co and Dy from (4.8). Equations (4.7) and
(4.8) are readily solved for Py and Q. From (4.5) and (4.6),

Co = —(3G4A0 + 2(1230) , Dy = 2aGAo + a4Bo (4.11)

and substituting (4.11) into (4.9) and (4.10) gives two equations for Ag and
By. It can be verified that

| 1 Ey 1:9
A0=0, Bo=——-—,S, C’o=—,aS,
2 B B,
| (4.12)
Do=-LBlyts  R=ats Qo= —2a*S
0=-3 A ) 0= , 0=—3 -
4.2 First order in ¢
Equating the coefficients of ¢ in the boundary conditions gives
a*B; +24%C, + 3D, =0, (4.13)
3a8A; +a*B, —a?Cy -3D1 =0, (4.14)
2a2P; + 3Q1 = 2a*S + 4a By + 44?Cy — 4a’ Py , (4.15)
a?Py + 3Q; = —2a*S — 18a%Ap — 4a*By + 2a2Cy — 2%y, (4.16)

201a%A; + a‘B; — 2(1 - 0'1)0,201 - Dy +2(1 - 0’2)010.2131 + ath
= —2aa4S - 120’1&644.0 - 4a4Bo + 4(1 - 0'1)0.200 — 4(1 - 0'2)(10.21:’0 ) (4.17)

(3 - 20’1)0,6141 -+ 0431 - (1 - 20’1)0201 + Dy + (1 - 262)aa2P1 — ath

= —2a0%S — 6(3 — 201)a® A — 4a% By + 2(1 — 201)a%Cp — 2(1 — 203)aa? Py .
(4.18)
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The constants By, C; and D; were eliminated from (4.15) using (4.13).
The constants Ay, By, C1 and D; were eliminated from (4.16) using (4.14).
The structure of the left hand side of the first order perturbation equations,
(4.13) to (4.18), is the same as that of the zero order perturbation equations,
(4.5) to (4.10). The first order system is therefore solved in the same way
as the zero order system. It is found that

R e AT 1 (#19)
b= [ - s B B S (420
e izt (5i2) ] s
Dy = — [1 — -g—:] % a*s, (4.22)
P =2 [1 - %} a?s , (4.23)
QL =-2 [1 - %] als . (4.24)

4.3 Solutions correct to first order in ¢

The solutions for the stress, displacement, rotation and strain energy due to
distortion can now be obtained correct to first order in &.
Consider first region 1 at the surface r = a. Correct to first order in ¢,

/ — - /
ng)(a,ﬂ) g, S[ + (3 21 _ (3 202) E,) ]sm20 (4.25)

l—-0q 1—o09
4aS | 1-20 1-20;\ Ej
(1) _ a5 1 2
u,/(a,8) 7 _1+(1—al (1_02) E’) ]sm29 (4.26)
[ !
ug,l)(a,ﬁ):E%g 1+2(1—--§——) e] cos 20 , (4.27)
2 L 2

4S o E] o
le) (asa) =S I |:1 + 2 ((1 ____20_2) E _ 1 —101) E] COS 20 ) (428)
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[1 + (1 - 0'1)2 + 0'%]
(1-o01) E

3-20, (3-20)\ E,
+2( T (1—-02) E’) s] sin220 . (4.29)

Consider next region 2 at the interface r = b. We express a in terms of
b using (4.3). Then, correct to first order in ¢,

132

Vi (a,6) = g

f
72(b,0) = } Ssin26 , (4.30)
2
/ .
D (b,0) = 8 21 90528, (4.31)
E2
2) By
Tog (0,0) = —48 1 -3 E‘T e] sin 2@ , (4.32)
4bS 1-202\ E}
ul? _ (-2 1
(b,8) = E’ 1 ( T op ) E s] sin 26 , (4.33)
ugz)(b, 6) = 46? 1 2 %s] cos 26 , (4.34)
!
Q®(5,0) = -%5, [1 -2 g}- e] cos 26 , (4.35)
2 2

+ o2)

vV (b,6) = g (@ = [1+ (1 - 02)% + 03] 2 [1
2

o (5+2(1 - 203) +403) E]
(1+(1-02)2+03) E;

c-:] sin? 26 . (4.36)

The results correct to first order in € are analysed in Sections 5 and 6.
The conclusions assume that terms of order £2 can be neglected.
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5 Thin adhesive liner without joint and fracture
penetration

In this section we consider the first model in which a thin liner forms a
cylindrical layer firmly bonded to the inner surface of the excavation. There
is no penetration of the liner material into joints and fractures in the rock
mass. The liner is thin if its thickness is less than 20mm. Region 1, ¢ <
7 < b, is the liner and region 2, b < r < 00, is the rock. We compare the
stress, strain energy due to distortion, displacement and rotation in region 2
at the interface r = b with corresponding values in a cylindrical excavation
of radius b without a liner.

Consider first the stress concentration factor which can be defined in
terms of either the maximum shear stress or the maximum tensile stress
[2]. Since the excavation is subjected to shear consider first the shear stress.
Then

mazimum shear stress due to excavation
mazimum shear stress in absence of excavation

stress concentration factor =

Now, at a given point, the maximum shear stress equals one-half of the
magnitude of the difference between the greatest and least principal stresses
at that point {5]. Since 7,4 = Ofe), the principal stresses correct to order ¢
are 7y, Tog, Tzz Where T,z is given by (2.4). A suitable point to consider is
r = b, § = 37 /4. In the absence of a liner, this point is on the surface of the
excavation and 7pg attains its maximum value of 45 and from the boundary
condition 7., = 0. In the presence of a liner the greatest and least principal
stress at this point are 'rég)(b 37 /4) and (2)(b, 3w/4). Hence, using (4.32)
and (4.30),

I3
mazximum shear stress at (b,' 3—415) =28 (1 -4 % s) : (5.1)
Since the shear stress in the absence of the excavation is S it follows that
stress concentration factor (shear stress) = 2 (1 4 % E) . (5.2)

The stress concentration factor can also be defined as:
mazimum tensile stress due to excavation
mazimum tensile stress in absence of ezcavation

stress concentration factor =

This definition may be appropriate for a brittle material [2]. The greatest
normal stress acting on any plane through a given point is the greatest
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principal stress at that point [5]. Consider again the point r = b, § = 37 /4.
Then

!
mazimum tensile stress = 'rég) (b, %;—r) =48 (1 -3 % e) . (5.3)
. 2
When there is no excavation the principal stresses are S, 0, —S and therefore
the maximum tensile stress is S. Thus

F
stress concentration factor (tensile stress) = 4 (1 -3 % s) . (5.4)

The stress concentration factor is a measure of the severity of the stress
field. When there is no liner the stress concentration factor is obtained
by setting € = 0. The stress concentration factors, (5.2) and (5.4), at the
interface are both reduced by the presence of the liner. Stress is transferred
from the rock to the liner. The greater the ratio F]/FE; the more stress will
be transferred. The stiffer liner will attract more stress from the rock. It
will therefore be better in preventing facture and in inhibiting the onset of
the movement of rock. However, it is known that once rock movement has
started a flexible liner will be better for support than a stiff liner [8]. The
decrease in the stress concentration factor is proportional to £ and therefore
linearly proportional to the thickness of the liner. The thicker the liner the
greater the transfer of stress from the rock to the liner.

When E| = E} the stress concentration factor does not depend on the
elastic constants. The liner acts as an arch. If E] > Ej the support given
by the liner exceeds the arching action while if B < Ej it is less than the
arching action.

The strain energy due to distortion in the rock at the interface r = b,
given by (4.36), is clearly decreased by the presence of the liner. The decrease
is proportional to the ratio E / E% and is greater for a stiff liner. The decrease
is also proportional to € and hence is linearly proportional to the thickness of
the liner. Since the strain energy due to distortion can be used to determine
the limiting stress at which failure occurs, the effect of the liner is to inhibit
the onset of failure in the rock. The rock with an adhesive liner can sustain a
larger shear perturbation before failure occurs than rock without an adhesive
liner.

The magnitude of the radial and tangential components of the displace-
ment at the interface, u,(,2)(b, 0) and ugz)(b, 8), given by (4.33) and (4.34), are
both decreased due to the presence of the adhesive liner. Again the decrease
is proportional to E!/E} and . The decrease is greatest for a stiff liner and
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is proportional to the thickness of the liner. Since u,(.2)(b, @) is proportional
to sin 26 and u‘(,z)(b, #) is proportional to cos 26, the radial displacement van-
ishes when the magnitude of the tangential displacement is a maximum and
conversely the tangential displacement vanishes when the magnitude of the
radial displacement is a maximum. The deformation of the rock due to the
shear perturbation is inhibited by the adhesive liner.

The rotation of the rock at the interface, @ (b, 8), is given by (4.35).
We see that the bonding of the liner to the rock restricts the rotation of the
rock. The reduction in the rotation is proportional to E'/E; and . Hence
stiffer and thicker adhesive liners will be more effective in reducing block
rotation. The rotation ng)(b, 6) is proportional to cos26 while the hoop
stress Tg)(b,ﬂ) is proportional to sin28. At points on the interface where
the hoop stress in the rock vanishes the magnitude of the rotation in the
rock is a maximum and at points where the rotation in the rock vanishes
the magnitude of the hoop stress is a maximum.

The tensile stress in the liner at r = a is the hoop stress Té;)(a., ) given
by (4.25). Unlike the hoop stress in the rock at r = b given by (4.32), the
tensile stress in the liner is proportional to the ratio B /Fj;. The stiffer liner
therefore attracts stress [8].

6 Joint and fracture penetration by liner material

In this section we consider the two models in which the surface of the ex-
cavation is r = a and the liner material penetrates info the open joints and
fractures. The thin layer of liner at the surface will be neglected since its
thickness is typically 4mm or less. The effect of the liner will be modelled
only by the penetration of the liner material into the joints and fractures in
the rock.

The effect of cracks on the elastic properties of rock has been reviewed by
Jaeger and Cook [3]. The effective Young’s modulus of a body containing
open cracks and cavities and of a body containing closed cavities if the
surfaces of the cracks slide past one another is less than the intrinsic Young’s
modulus of the solid body. The effective Poisson ratio of a body containing
equidimensional cavities or containing very flat open cracks is less than the
intrinsic Poisson ratio of the solid body. (The effective Poisson ratio of a
body containing closed cracks is greater than its intrinsic Poisson ratio.)
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6.1 Penetration of liner material into fractures to their full
extent

We now consider the second model in which the liner material penetrates
into the fractures to their full extent. The rock outside the liner penetration
contains no fractures. We will compare the displacement and stress at the
surface of the excavation, r = a, before and after the application of the liner
material.

Region 1, a < r < b, consists of rock with open joints and fractures
and region 2, b < r < o0, consists of rock without fractures. Before the
application of the liner material, £y < F3 and o1 < 02. We will assume
that after the open joints and fractures have been penetrated by the liner
material the Young’s modulus and Poisson ratio of the rock with the liner
material is the same as the intrinsic Young’s modulus and Poisson ratio of
the rock in region 2. Thus after the liner material has been applied E; = F»
and o1 = o9 and the stress and displacement will be independent of ¢.

Consider first the radial and tangential displacement at the surface of the
excavation due to the shear perturbation. If the perturbation occurs before
the application of the liner material then ug)(a,ﬂ) and u,(,l) (a,0) are given
by (4.26) and (4.27). If the perturbation occurs after the liner material is
applied then, setting o7 = o2 and E| = E} in (4.26) and (4.27),

u{D(a,6) = %?— sin20,  u{’(a,0) = ﬁ cos 26 . (6.1)
2 2

Now 01 < 02, E1 < E3 and therefore F{ < Ej. Also to investigate the
magnitude of (4.26) we observe that

1—20‘1_ 1 - 209 Ei__ 1— 209 1— 20 1—-o09 _E_i >0
1-o01 l-02 ) B} \1-o09 1-203) \1-01/) E}

since 12 )
— &0 — a3
(1_202) (1—01) >1. (6.3)

Hence the magnitudes of the displacements in (6.1) are less than the mag-
nitudes of (4.26) and (4.27). The reduction in magnitude is proportional to
ae, the depth of penetration of the liner material. Hence the penetration of
the liner material into the joints and fractures reduces the magnitude of the
radial and tangential displacement at the surface of the excavation and this
reduction increases linearly with the depth of penetration.

Consider now the rotation of a material element at the surface of the
excavation due to the shear perturbation. If the perturbation occurs before
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the liner material is applied then le)(a,ﬁ) is given by (4.28). If it occurs
after the application of the liner material then, setting o1 = o2 and E| = Ej
in (4.28),

QN (a,0) = —457 cos26 . (6.4)
Now to investigate the magnitude of (4.28) we observe that

o3 Ej o _ o1+ 0'2) o1(1+01)
(1 —02) E2 1-0 (1-o? [Ez o2(1 +__0'2)] . (6.5)

But since 01 < o9,

0'1(1 + 0'1)
L it YA | 6.6
sall+og) © (6.6)
and we also have B
1
—<1. 6.7
= (67)
Thus if (1+01)
a7l a1
—_—_— g =<1, 6.8
oa(1 + 02) < (65)

then the magnitude of the rotation is decreased and penetration of the liner
material into joints and cracks will inhibit rotational movement of blocks
[8]. However if

E o1 (1 -+ 0‘1)

E; " o2(1+03)
then the magnitude of the rotation is increased. This case applies if the
Poisson ratio of the rock is not altered significantly by the cracks. Since
the displacement is decreased by the penetration of the liner material into
joints and cracks it is not unreasonable that the rotation could increase
because the work done by the shear perturbation will be the same with or
without the application of liner material. The magnitude of the change in
rotation is proportional to € and hence it increases linearly with the depth
of penetration of the liner material.

Consider next the hoop stress Toa)(aa ) at the surface of the excavation.

If the shear perturbation occurs before the liner materla.l is applied then the
hoop stress is given by (4.25). If 1t occurs after the liner material is applied
then, setting oy = o2 and E] = E} in (4.25),

<1, (6.8)

78 (a,8) = —4Ssin 20 . (6.10)

Unlike the displacement and rotation given by (4.26), (4.27) and (4.28), the
hoop stress (4.25) is proportional to EY /E5. The change in magnitude due to
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the application of the liner material is therefore more significant for the hoop
stress than for the displacement and rotation. The magnitude of the hoop
stress is increased by a factor Ej/E] if the shear perturbation occurs after
the application of the liner material. The penetration of the liner material
into joints and cracks will bond blocks together and inhibit movement of
blocks. This extra bonding results in a greater hoop stress when the shear
perturbation takes place.

Finally, consider the strain energy due to distortion at the surface of
the excavation, Vo(l) (a,8). It depends only on Té;)(a,, @) because 1‘7(-,1-)(0., 8)
and -r,gl)(a, 6) both vanish from the boundary conditions (3.6) and (3.7). If

8
the shear perturbation occurs before the application of the liner material

then Vo(l) (a, 8) is given by (4.29). We see that Vom (a, @) is proportional to
! /B2, If the shear perturbation occurs after the liner material has been
applied then setting oy = o2 and E| = Ej; in (4.29),

8 [1+(1—02)?+02
Vi (a,8) = 3 [ ((1 - a:)) E;' 2] g2 gin2 29 (6.11)
The strain energy due to distortion is greater by a factor E;/F] if the shear
perturbation occurs after the liner material has been applied. The bonding
of blocks together due to the penetration of liner material into joints and
cracks prevents the loosening of the rock mass due to the shear perturbation.
The strain energy due to distortion is increased as a result.

6.2 Fracture zone large compared with penetration distance

Finally, we consider the third model in which the liner material penetrates
some distance into the fractures but the fractures extend well beyond this
depth. We will make the simplification that the fracture zone extends to
infinity.

Before the application of the liner material, region 1 (@ < r < b) and
region 2 (b < r < o) consist of fractured rock with o = o2, Ey = E; and
E!| = Ej. The stress and displacement will be independent of . After the
application of the liner material, region 1 is penetrated to its full extent and
region 2 is not penetrated by liner material. Hence o1 > 03, By > E; and
E{ > Ej.

Consider the radial and tangential components of the displacement at
the surface of the excavation. If the shear perturbation occurs before the
application of the liner material then oy = 02, E] = Ej and uﬁl) (a,8) and
ugl)(a., 8) are given by (6.1). If the perturbation occurs after the application



98 D.P. Mason and T.R. Stacey

of the liner material then ul (a,8) and ugl) (a,@) are given by (4.26) and
(4.27) with oy > 02 and E{ > Ej. Clearly the magnitude of ug,l) (a,8) is

decreased by the application of liner material. The magnitude of ne (a,8)
is also decreased because

1-201 (1-20y _lEi____ 1-20\ [E] 1-20 1—-02) <0
l-01 \l1-a3/) B} \1-203/ |E} \1-202/\1-o

(6.12)

1- 20‘1 l-0 2
(1_202) (1-—01)<1' (6.13)
The penetration of the liner material into the joints and fractures therefore
reduces the magnitude of the radial and tangential components of the dis-
placement at the surface of the excavation and the reduction is proportional
to the depth of penetration ae.

Consider next the rotation of a material element at the surface of the
excavation. If the shear perturbation occurs before the liner material is
applied then ¢ = 03, E} = E, and OV (a,0) is given by (6.4). If it occurs
after the application of the liner material then N5 (a, @) is given by (4.28)
with 01 > o3 and E| > Ej. The magnitude of Q" (a,§) again depends on
(6.5) but now since o7 > o3,

since

o1(1 + o1)

1 6.14
oa(l + a2) > ( )
and also B
1
2 >1. (6.15)
Thus if

o1{1+ o1) ﬂ
oo(l+03) = Es
then the magnitude of the rotation is decreased while if

>1, (6.16)

Ey _o1(l+01)
—_—>——=<>1, 6.17
Ey " o3(1+ 03) (6.17)

the magnitude of the rotation is increased by the application of the liner
material. Condition (6.17) will apply if the Poisson ratio of the rock is
not increased significantly by the penetration of the liner material. The
magnitude of the change in rotation is proportional to & and therefore it
increases linearly with the depth of penetration of the liner material.



Support to rock excavations provided by sprayed liners 99

Consider next the hoop stress at the surface of the excavation. If the
shear perturbation occurs before the liner material is applied then o = o3,
E{ = Ej and T,S;)(a, 8) is given by (6.10). If it occurs after the application of
the liner material then 7},(a, 8) is given by (4.25) with o1 > 02 and E} > Ej.
The magnitude of the hoop stress is increased by the factor Ej/Ej > 1. The
larger hoop stress when the perturbation occurs demonstrates the stronger
bonding of the rock mass due to the penetration of the liner material.

Lastly, consider the strain energy due to distortion at the surface of the
excavation, Vo(l) (a,8). If the shear perturbation occurs before the applica-
tion of the liner material then by setting oy = o9 and E] = E} in (4.29),
(6.11) is obtained. If it occurs after the application of the liner material
then Vo(l) (a, 8) is given by (4.29) which is greater than (6.11) by the factor

! /E4 > 1. The larger strain energy due to distortion when the shear per-
turbation takes place is due to the stronger bonding of the rock mass by the
penetration of the liner material. '

The general conclusions derived from the second and third models are
essentially the same. If the shear perturbation occurs after the application
of the liner material then the displacement at the surface of the excavation is
reduced, the rotation will either increase or decrease depending on the rela-
tive magnitude of 01(1+01) /o2(1 + 02) and E1/E; and the hoop stress and
strain energy due to distortion at the surface will increase, approximately
independently of the depth of penetration, by a factor which is the ratio of
E' for fractured rock penetrated by liner material to E' for fractured rock.

7 Conclusions

We found that a thin adhesive liner firmly bonded to the surface of the
excavation reduced the magnitude of the stress, strain energy due to distor-
tion, displacement and rotation in the rock at the interface. This support is
provided without the penetration of liner material into joints and fractures.
For a thin liner with thickness less than 20mm, second order terms in the
thickness parameter £ can be neglected. The reduction then is proportional
to the thickness of the liner. This is in agreement with the numerical results
of Stacey and Yu [8] who found a linear relation between support capacity
and the thickness of the liner. The reduction is also proportional to E}/Ej
and is therefore greater for a stiffer liner. The stiffer liner is better at pre-
venting fracture and inhibiting the onset of rock movement although once
rock movement has started a flexible liner will give better support [8]. The
tensile stress in the liner is proportional to £{/FE} and therefore the stiffer
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liner attracts more stress which reduces the stress concentration factor in
the rock. Liner stiffness, liner thickness, liner tensile strength and the firm
bonding of the liner to the rock contribute to the support action provided
by the liner. These mechanisms inhibit the onset of rock movement.

We also found that the penetration of the liner material into joints and
cracks does have a significant effect on the rock mass. The predictions of the
two models for liner penetration were essentially the same. The displacement
due to the shear perturbation is reduced. The rotation can increase and the
condition for this to happen is satisfied, for instance, if the Poisson ratio
of the rock is not sigrificantly reduced by cracks in the rock. If terms of
order €2 can be neglected the changes to the displacement and rotation are
proportional to the depth of penetration of the liner material. This again is
in agreement with the numerical modelling of Stacey and Yu [8] who found
that the support capacity increased approximately linearly with the depth
of peneratration up to 10mm. In both models the the hoop stress and the
strain energy due to distortion were increased by a factor which depends
on the ratio of the Young’s modulus in fractured rock penetrated by liner
material to the Young’s modulus of the fractured rock.

The actual magnitude of liner effecs can be small. When the thickness
of the liner is 20mm and the radius of the excavation is 2m then £ = 1072,
For example, with the stress concentration factor for shear stress,

decrease in stress concentration factor E{
- - — = 4-—=¢. (6.18)
stress concentration factor without liner 2

If 4 E|/E, ~ 1, then (6.18) is of order 1072, The actual magnitude of liner
penetration effects is also of the order of (6.18). If the depth of penetration is
as large as 200mm then (6.18) is of order 10~1. Exceptions are the increase
in magnitude of the hoop stress and strain energy due to distortion as a
result of liner penetration which are zero order in € effects and therefore are
more significant.

This work could be extended in several directions.

We investigated the effect of an adhesive liner and penetration of liner
material into joints and cracks, on a cylindrical excavation subjected to a
uniform shear at infinity. We could consider instead a uniform compression
or tension at infinity. A remote compressive or tensile perturbation is more
fundamental than an applied shear since the remote shear state can be
constructed by superposition of appropriately orientated compression and
tension states.

An adhesive liner that is firmly bonded to the rock will be subjected
to the same deformations as the rock and since it may be stiffer or more
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brittle than the fractured rock it may fail under the deformations [7]. It may
therefore be preferable for the rock-liner bond to be less firm in order to let
shear occur on the interface making the deformation less localised. The
effect of a uniform shear or tension at infinity on a cylindrical excavation
with a liner less firmly bonded to the rock could be investigated.

Excavations are commonly supported by a system of liners which could
consist of wire mesh, shotcrete and shotcrete reinforced by fibres. The sup-
port characteristics will be different for each system of liners. The perfor-
mance of a liner on its own may be different from its performance as a
component of a system [7}. The effect of a uniform shear or tension at in-
finity on a system of two liners could be investigated. There would be three
regions and the same mathematical solution could be used to model a thin
spray-on-liner which penetrates the joints and fractures in the rock to their
full extent but the thickness of the liner is not neglected, or the penetration
of liner material some distance into joints and fractures but the fractures do
not extend to infinity. In the later case the three regions would be the rock
mass into which liner material has penetrated, the further fractured rock
mass and the rock mass beyond the full depth of fracturing.
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Figure 1. Cylindrical excavation in an infinite elastic medium subjected to
uniform shear S at infinity: region 1, a < r < b and region 2, b < r < 0.
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